ARITHMETIC FORMULAS

Explicit

$$a_n = a_1 + d(n-1)$$

Recursive

 a_1 must be defined

$$a_n = a_{n-1} + d$$

Sum of a Finite Arithmetic Series

$$S_n = \frac{n}{2} \left(a_1 + a_n \right)$$

GEOMETRIC FORMULAS

Explicit

$$a_n = a_1 \left(r\right)^{n-1}$$

Recursive

 a_1 must be defined

$$a_n = a_{n-1}(r)$$

Sum of a Finite Geometric Series

$$S_n = \frac{a_1 \left(1 - r^n \right)}{1 - r}$$

Sum of an Infinite Geometric Series

If
$$|r| < 1$$
, then $S = \frac{a_1}{1 - r}$.